Metformin overdose causes platelet mitochondrial dysfunction in humans
نویسندگان
چکیده
INTRODUCTION We have recently demonstrated that metformin intoxication causes mitochondrial dysfunction in several porcine tissues, including platelets. The aim of the present work was to clarify whether it also causes mitochondrial dysfunction (and secondary lactate overproduction) in human platelets, in vitro and ex vivo. METHODS Human platelets were incubated for 72 hours with saline or increasing doses of metformin (in vitro experiments). Lactate production, respiratory chain complex activities (spectrophotometry), mitochondrial membrane potential (flow-cytometry after staining with JC-1) and oxygen consumption (Clark-type electrode) were then measured. Platelets were also obtained from ten patients with lactic acidosis (arterial pH 6.97 ± 0.18 and lactate 16 ± 7 mmol/L) due to accidental metformin intoxication (serum drug level 32 ± 14 mg/L) and ten healthy volunteers of similar sex and age. Respiratory chain complex activities were measured as above (ex vivo experiments). RESULTS In vitro, metformin dose-dependently increased lactate production (P < 0.001), decreased respiratory chain complex I activity (P = 0.009), mitochondrial membrane potential (P = 0.003) and oxygen consumption (P < 0.001) of human platelets. Ex vivo, platelets taken from intoxicated patients had significantly lower complex I (P = 0.045) and complex IV (P < 0.001) activity compared to controls. CONCLUSIONS Depending on dose, metformin can cause mitochondrial dysfunction and lactate overproduction in human platelets in vitro and, possibly, in vivo. TRIAL REGISTRATION NCT 00942123.
منابع مشابه
Metformin overdose: time to move on
Does metformin-associated lactic acidosis really exist? Despite an old controversy, there is no doubt about it. But do we understand what is going on? Laboratory findings raised several hypotheses explaining the pathophysiology of this disease. The main cause could be an inhibition of either gluconeogenesis or mitochondrial respiratory chain complex I. From bench to bedside, one hypothesis is n...
متن کاملMetformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs
INTRODUCTION Hepatic mitochondrial dysfunction may play a critical role in the pathogenesis of metformin-induced lactic acidosis. However, patients with severe metformin intoxication may have a 30 to 60% decrease in their global oxygen consumption, as for generalized inhibition of mitochondrial respiration. We developed a pig model of severe metformin intoxication to validate this clinical find...
متن کاملThe mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation.
Acetaminophen (APAP) overdose is the predominant cause of acute liver failure in the United States. Toxicity begins with a reactive metabolite that binds to proteins. In rodents, this leads to mitochondrial dysfunction and nuclear DNA fragmentation, resulting in necrotic cell death. While APAP metabolism is similar in humans, the later events resulting in toxicity have not been investigated in ...
متن کاملMetformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release
Thrombosis and its complications are the leading cause of death in patients with diabetes. Metformin, a first-line therapy for type 2 diabetes, is the only drug demonstrated to reduce cardiovascular complications in diabetic patients. However, whether metformin can effectively prevent thrombosis and its potential mechanism of action is unknown. Here we show, metformin prevents both venous and a...
متن کاملThe Protective Effect of Garlic Extract against Acetaminophen-Induced Loss of Mitochondrial Membrane Potential in Freshly Isolated Rat Hepatocytes
Overdose of acetaminophen causes severe hepatic necrosis in humans and experimental animals. Studies on its hepatotoxicity remain a very active area since some of current data are still uncertain. In this study, freshly isolated rat hepatocytes were used to determine the effects of garlic extract and its component, allicin on the acetaminophen-induced cell cytotoxicity and to compare with the e...
متن کامل